◎研究方向 富碳纳米材料的构建与结构控制、富碳纳米材料功能化与多元复合研究、富碳纳米材料在能源与环境领域中的应用等。 ◎教育经历 l 2000年,中科院煤炭化学研究所,获化学工艺学博士学位 ◎工作经历 l 2021.9至今,中国石油大学(华东)高端化工与能源材料研究中心,主任 l 2007.9-2021.8,国家纳米科学中心,研究员,博导 l 2005.5-2007.9,马普高分子研究所,课题组长 l 2003.1-2007.9,德国马普协会高分子研究所,访问学者 l 2000.8-2002.12,中科院化学研究所,博士后 ◎学术兼职 兼任中国颗粒学会、中国复合材料学会、能源学会、中国石墨烯产业技术创新战略联盟等理事,担任Adv. Mater. Tech.等期刊编委。 ◎主讲课程 在教学课程体系方面,先后为中国科学院大学、中国石油大学(华东)的本科生和研究生讲授《纳米功能材料》、《材料科学与工程前沿讲座》、《纳米前沿讲座》等必修课程。其中《纳米功能材料》获国科大优秀精品数字课程,每年上课人数均在180 人以上。教学过程中将立德树人根本任务自然融入教育教学全过程,加强课程教材建设,出版专著《功能化石墨烯及应用》,以章节作者出版《石墨烯:从基础到应用》、《Nanocarbons for Advanced Energy Storage》,《Carbon Materials With A Kick》等,教学过程中将科研成果与最新理论融入教学中,不断提高学生解决问题的实践能力。 ◎指导研究生及博士后 在人才培养方面,尊重学生多元化发展需求,努力成为学生的良师益友和成长导师,三次荣获中科院优秀研究生指导教师。培养研究生 50 余人、博士后5 人,已毕业博士研究生30 余人,多人获得国家纳米科学中心优秀研究生等称号,3 人获得中科院优秀博士学位论文。目前罗彬在澳洲昆士兰大学获多项澳洲人才项目、王斌被中科院聘为百人计划学者、孔德斌为中国石油大学(华东)光华学者/青年泰山学者等;杨树斌为北京航空航天大学教授,被评为国家杰青;李忠涛为中国石油大学(华东)教授、被评为山东省泰山学者;何海勇为中科院宁波材料所研究员入选中科院百人计划,成为国内新能源领域的学术新秀。 ◎承担项目 主持科技部国际合作、863、纳米重大专项课题,基金委国际合作、杰出青年基金、重点项目、联合基金重点等项目20余项课题。部分如下: 1、面向极端条件的高比能二次锂氯电池材料、器件构建及机制研究,国家自然科学基金重大研究计划重点项目,2024.01.01-2027.12.31 2、多孔纳米材料的多级结构设计及光电协同高级氧化技术用于工业污水处理的机制研究,国家自然科学基金联合重点项目,2021.01.01-2024.12.31 3、石墨烯材料的结构与性能研究,科技部重大纳米专项课题,2012.01-2016.12 4、新型分子催化剂催化乙苯脱氢反应的性能与机制研究,国家自然科学基金面上项目,2012.01-2015.12 5、石墨烯透明导电薄膜研制,北京市重大科委项目课题,2012.06-2014.06 6、具有良好透光性和导电性的石墨烯薄膜的热化学法制备研究,国家自然科学基金面上项目,2010.01-2012.12 7、用于光电器件的新型低成本窗口电极材料,科技部863项目,2009.05-2012.08 8、多功能纳米材料及微型太阳能电池研究,科技部国际合作项目,2009.01-2011.12 ◎获奖情况 1、北京市自然科学三等奖 2、上海市自然科学一等奖 ◎荣誉称号 1、国家杰出青年科学基金获得者 2、中科院“百人计划”入选者 3、科睿唯安“全球高被引科学家” 4、爱思唯尔“中国高被引学者” ◎著作 出版“十三五”国家重点出版物出版规划项目“战略前沿新材料”《功能化石墨烯材料及应用》著作,合著Wiley-Vch 出版社“Nanocarbons for Advanced Energy Storage”、“Carbon Materials With A Kick”、CRC Press 出版社“Graphite, Graphene, and Their Polymer Nanocomposites”英文专著三部。 ◎论文 u 近期代表性论文: W. Feng, X. Wei, J. Yang, C. Ma, Y. Sun, J. Han, D. Kong* and L. Zhi*, Iodine-induced self-depassivation strategy to improve reversible kinetics in Na-Cl2 battery. Nature Communications, 2024, 15, 6904 F. Cao, X. Zhang, Z. Jin, J. Zhang, Z. Tian, D. Kong,Y. Li, Y. Li,* and L. Zhi*,Electronegativity Matching of Asymmetrically Coordinated Single-Atom Catalysts for High-Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2024, 2303893 W. Feng, X. Wei, F. Cao, Y. Li, X. Zhang, Y. Li, W. Liu, J. Han, D. Kong*, L. Zhi *, In Situ Structure Modulation of Cathode-Electrolyte Interphase for High-Performance Potassium-Ion Battery, Energy Storage Materials, 2024, https://doi.org/10.1016/j.ensm.2024.103186 D. Wang, Y. Ma*, W. Xu, S. Zhang, B. Wang, L. Zhi*, X. Li*, Controlled Isotropic Canalization of Micro-Sized Silicon Enabling Stable High-Rate and High-Loading Lithium Storage. Advanced Materials, 2023: e2212157. Y. Li, S. Zhang, S. Wang*, Z. Xiao, F. Meng, Q. Li, X. Zhang, Z. Zhang, L. Zhi*, Z. Tang*, Layered Structure Regulation for Zinc-Ion Batteries: Rate Capability and Cyclability Enhancement by Rotatable Pillars. Advanced Energy Materials,2023, 2203810. X. Xu, D. Kong*, J. Liang, Y. Gao, Q. Yang, B. Wang*, L. Zhi*. Bottom-up construction of microporous catalyst with identical active sites for efficient hydrogen peroxide production. Carbon, 2021, 171, 931-937. X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong, K. Müllen, X. Li, L. Zhi*. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11, 3826. X. Zhang, D. Kong, X. Li*, L. Zhi*. Dimensionally designed carbon-silicon hybrids for lithium storage. Advanced Functional Materials, 2019, 29(2), 1806061. Y. Gao, L. Zhi*, et al. N, P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis.Nano Energy, 2019, 64, 103879. B. Wang, J. Ryu, S. Choi, X. Zhang, D. Pribat, X. Li*, L. Zhi*, S. Park *, R. S. Ruoff *. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano, 2019, 13(2), 2307-2315. Q. Yang, Z. Xiao, D. Kong, T. Zhang, X. Duan, S. Zhou, Y. Niu, Y. Shen, H. Sun, S. Wang*, L. Zhi*. New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy, 2019, 66, 104096. D. Kong, L. Zhi*, et al. Rational design of carbon-rich materials for energy storage and conversion. Advanced Materials, 2019, 31, 1804973. X. Li*, L. Zhi*. Graphene hybridization for energy storage applications.Chemical Society Review, 2018, 47, 3189-3216. J. Ning, L. Hao, M. Jin, X. Qiu, Y. Shen, J. Liang, X. Zhang, B. Wang, X. Li, L. Zhi*. A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Advanced Materials, 2017, 29, 1605028. D. Kong, X. Li, Y. Zhang, X. Hai, B. Wang, X. Qiu, Q. Song, Q. Yang, L. Zhi*. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy & Environmental Science, 2016, 9, 2666-2672. H. He, D. Kong, B. Wang, W. Fu, X. Qiu, Q. Yang, L. Zhi*. Carbon-network-integrated SnSiOx+2 nanofiber sheathed by ultrathin graphitic carbon for highly reversible lithium Storage.Advanced Energy Materials, 2016, 6, 1502495. L. Hao, S. Zhang, R. Liu, J. Ning, G. Zhang, L. Zhi*. Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Advanced Materials, 2015, 27, 3190-3195. B. Luo, L. Zhi*. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy & Environmental Science, 2015, 8, 456-477. B. Wang, X. Li, B. Luo, L. Hao, M. Zhou, X. Zhang, Z. Fan, L. Zhi*. Approaching the downsizing limit of silicon for surface-controlled lithium storage. Advanced Materials, 2015, 27, 1526-1532. L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang. J. Yang, A. Thomas, L. Zhi*, Structural Evolution of 2d Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors. Journal of the American Chemical Society, 2015, 137,219-225.
◎专利 已授权国家发明专利30余件,其中“石墨烯粉体制备与应用”等三个专利包已经完成了技术转让和项目落地。 |